skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qinglei Meng, Michael Daugherty"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transcranial magnetic stimulation (TMS) is widely used for noninvasive brain stimulation. However, existing TMS tools cannot deliver targeted neural stimulation to deep brain regions, even though many important neurological disorders originate from there. To design TMS tools capable of delivering deep and focused stimulation, we have developed both electric and magnetic field probes to evaluate and improve new designs and calibrate products. Previous works related to magnetic field measurement had no detailed description of probe design or optimization. In this work, we demonstrated a magnetic field probe made of a cylindrical inductor and an electrical field probe modified from Rogowski coil structure. Both have much smaller size and higher directivity than commercial dipole probes. Using probe, we can calibrate and monitor any new types of TMS coil or array design and verify measured results with the other probe. We mathematically analyze their characteristics and performance and obtained a two-dimensional vector plot of the induced electric field, which matched the measured results from the second type of probe. A commercial circular coil and a figure-8 coil, with relatively complex vector field distribution, were used as examples to demonstrate the high-resolution and accurate measurement capability of our probes. 
    more » « less